ВТБ применил машинное обучение при кредитовании застройщиков в 30 городах
ВТБ завершил пилотный проект по использованию инструментов машинного обучения. Технология поможет банку эффективнее оценивать стоимость строящихся объектов и в ускоренном режиме принимать решения по выдаче кредитов на жилищное строительство. Новый сервис протестирован в 30 городах России.
В основе сервиса — универсальная платформа геоаналитики, запущенная ВТБ в 2020 году и позволяющая сопоставлять 170 слоев обезличенных данных из банковской сферы, телекома и digital-сервисов. В решении используется обезличенная информация о жителях аналогичных домов, а также районов со схожей транспортной инфраструктурой, имеющих похожие интересы, структуру доходов и расходов и т.д. Уникальный периметр данных анализируется методами машинного обучения для построения сложных нелинейных моделей оценки стоимости объектов. Все это позволяет оперативно принимать решения о выдаче банком кредитов под строительство.
При стандартном методе аналитики для принятия решения в ручном режиме сравнивают территориально близкие объекты. Модели, основанные на Big Data, позволяют оперативно получать качественную аналитику на базе гораздо большего объема разнообразной информации. Наиболее значимые конкурентные преимущества сервис дает в ситуации, когда строящийся жилой объект не имеет рядом аналогов, и оценить его, используя только метод сравнения с похожими соседствующими объектами, невозможно.
«При разработке сервиса мы столкнулись с тем, что рынок жилой недвижимости имеет очень динамичный характер. Для того, чтобы «успеть» за рынком в таком широком географическом периметре, мы разработали не просто модели машинного обучения, а Geo AutoML сервис. Он позволяет перестраивать модели в полностью автоматическом режиме. На сегодняшний день AutoML-решений на рынке много, но это первая история с применением геоаналитики. Поэтому сервис можно считать уникальным», — комментирует Максим Коновалихин, руководитель департамента анализа данных и моделирования – старший вице-президент ВТБ.
Руслан Еременко, руководитель департамента регионального корпоративного бизнеса – старший вице-президент ВТБ, отметил:
В основе сервиса — универсальная платформа геоаналитики, запущенная ВТБ в 2020 году и позволяющая сопоставлять 170 слоев обезличенных данных из банковской сферы, телекома и digital-сервисов. В решении используется обезличенная информация о жителях аналогичных домов, а также районов со схожей транспортной инфраструктурой, имеющих похожие интересы, структуру доходов и расходов и т.д. Уникальный периметр данных анализируется методами машинного обучения для построения сложных нелинейных моделей оценки стоимости объектов. Все это позволяет оперативно принимать решения о выдаче банком кредитов под строительство.
При стандартном методе аналитики для принятия решения в ручном режиме сравнивают территориально близкие объекты. Модели, основанные на Big Data, позволяют оперативно получать качественную аналитику на базе гораздо большего объема разнообразной информации. Наиболее значимые конкурентные преимущества сервис дает в ситуации, когда строящийся жилой объект не имеет рядом аналогов, и оценить его, используя только метод сравнения с похожими соседствующими объектами, невозможно.
«При разработке сервиса мы столкнулись с тем, что рынок жилой недвижимости имеет очень динамичный характер. Для того, чтобы «успеть» за рынком в таком широком географическом периметре, мы разработали не просто модели машинного обучения, а Geo AutoML сервис. Он позволяет перестраивать модели в полностью автоматическом режиме. На сегодняшний день AutoML-решений на рынке много, но это первая история с применением геоаналитики. Поэтому сервис можно считать уникальным», — комментирует Максим Коновалихин, руководитель департамента анализа данных и моделирования – старший вице-президент ВТБ.
Руслан Еременко, руководитель департамента регионального корпоративного бизнеса – старший вице-президент ВТБ, отметил:
Оценка рыночной стоимости строящейся недвижимости играет для банка важную роль в принятии решения о финансировании. Новая разработка позволяет нам повысить оперативность на этом этапе работы с проектом и получить более объективные и точные данные. Мы видим позитивные результаты с точки зрения повышения эффективности оценки проектов в рамках пилотирования сервиса и планируем до конца сентября масштабировать его на большинство крупнейших городов страны.Пока решение применяется только внутри банка, но в дальнейшем может стать доступным и сторонним пользователям — другим банкам и застройщикам жилой недвижимости.
Читайте также
Экономика России возвращается к сбалансированным темпам роста - ВТБ
После периода быстрого роста в 2023-2024 годах российская экономика демонстрирует замедление
Банк Русский Стандарт изменил условия приема двух вкладов
Банк Русский Стандарт изменил условия приема вкладов «Новые деньги» и «Новый доход»
ВТБ перевыпустил более 2 млн Пушкинских карт
Для удобства пользователей ВТБ начал перевыпускать Пушкинские карты заранее
ВТБ выяснил, сколько свободных денег россияне хранят на карте
В зависимости от поколений тренд на свободные деньги отличается
Выгодная тройка: самые доходные краткосрочные рублевые вклады, ноябрь 2025
Рассмотрим вклады на сумму в 300 тысяч рублей при условии размещения на 3 месяца в отделениях банков Казани
Минфин сохраняет планы отменить льготу по НДС при обслуживании банковских карт
Минфин подтвердил намерение отменить льготу по НДС на обслуживание банковских карт
Средняя ставка по вкладам в топ-10 банков снизилась до 15,32% годовых
ЦБ: средняя ставка по вкладам в топ-10 банков снизилась до 15,32% годовых
Выдачи кредитных карт в октябре сократились на четверть
В октябре в России было выдано 1,31 млн новых кредитных карт против 1,76 млн годом ранее
ЦБ определил ключевые изменения в регулировании рынка паевых инвестфондов
ЦБ определил ключевые изменения в регулировании рынка паевых инвестфондов
Более 52 тысяч татарстанцев приняли участие в онлайн-зачете по финграмотности
Всего в онлайн-зачете по финансовой грамотности участвовали более 2,3 млн человек и более 100 тысяч семейных команд со всей страны